
1

www.DBTechNet.org

DBTechNet Tutorial on

ORM – Object Relational Mapping

author: Arvo Lipitsäinen

Dpt. of Business Information Technology, Haaga-Helia University of Applied Sciences, Helsinki, Finland

Disclaimers

With the support of the EC LLP Transversal programme of the European Union.

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of

the author(s), and the Commission cannot be held responsible for any use which may be made of the information contained therein.

Content

1. Layered architecture

2. Object-oriented applications and relational database

3. Object/relational mapping paradigm mismatch

4. Entity

4.1 Embedded classes

5. Managing entities

5.1 Persistence context

5.2 Entity manager

5.3 Persistence unit

5.4 States of entity instances

6. Entity relationsps

6.1 One-to-one relationships

6.2 One-to-many/many-to-one relationships

6.3 Many-to-many relationship

7. Query language

8. Entity inherintance

2

1. Layered software architecture

The object oriented paradigm uses a layered application software architecture, which shares the

software logically into different layers. A typical, proven sharing criteria uses three layers:

1. Presentation layer

2. Business layer

3. Persistence layer

 (Bauer, C. & King, G. 2007)

2. Object-oriented applications and Relational databases

Object persistence

Object-oriented paradigm represents domain models as class diagrams and object models. In an object-

oriented applications, persistence allows the state of an object to be stored to disk and the same state of

the object can be re-created at some point in the future. This isn‘t limited only to single objects, many

objects interconnected with each other can be made persistent and later re-created. (Bauer, C. & King, G.

2007)

Relational databases

Almost all applications need persistent data and nowadays the relational database management system

(RDBMS) is the predominant technology for management of organization-wide persistent business data.

RDBMS is based on the relational model introduced by E. F. Codd in 1970.

According to the relational model all data is represented as mathematical n-ary relations. A relation is

defined as a set of n-tuples. A tuple is an unordered set of attribute values and an attribute is an ordered

pair of attribute name and type name. The relational model allows the data be operated upon by means

of relational operations of restriction, projection, Cartesian product and relational join. The relational

model allows you to define data structures and constraints that guarantee the integrity of the data.

(Bauer, C. & King, G. 2007)

Application programming interface of the relational database management system is SQL, hence the

today's relational database products are called SQL database management systems or shortly SQL

Presentation Layer

Business Layer

Persistence Layer

Database

3

databases. SQL language references concepts of the relational model with different terms: a relation is a

table, a tuple is a row in the table and the attribute is a column of the table. (Figure below)

Firstly, SQL databases are used from Java application with the Java Database Connectivity (JDBC) api.

Object Relational Mapping (ORM) means mapping of objects to tables in a relational database.

Mapping is done using metadata describing relationships between object attributes and table columns.

There are many ORM tools available in market e.g. Hibernate and Toplink. The tools enable at least

basic database operations like create, read, update, and delete (CRUD).

 The Java Persistence API (JPA) is the standard Java API for the management of persistence and

object/relational mapping. The JPA is required to be supported in Java EE. It can also be used in Java

SE environments.

Metadata for Object/Relational Mapping

The object/relational mapping metadata is part of the application domain model contract. It expresses

requirements and expectations on the part of the application as to the mapping of the entities and

relationships of the application domain to a database. Queries (and, in particular, SQL queries) written

against the database schema that corresponds to the application domain model are dependent upon the

mappings expressed by means of the object/relational mapping metadata.

It is permitted, but not required, that DDL generation be supported by an implementation of this

specification. Portable applications should not rely upon the use of DDL generation.

3. Object/relational mapping paradigm mismatch

Bauer & King (Bauer, C. & King, G. 2007) introduce a list of object/relational mismatch problems:

1. Problem of granularity

Java developers can freely define new classes in different levels of granularity. The finer-grained

classes, like Address class, can be embedded into coarse-grained classes, like User class. Instead

the type system of the SQL database are limited and the granularity can be implement only on two

level: on table (User table) and column level (Address column).

2. Problem of subtypes

The inheritance and polymorphism are basic and principal features of the Java programming

language. New subclasses can be extended from a superclass so, that the data and method members

of the superclass are visible in the subclasses and inherited methods can be overloaded or new

methods and data members can be added in the subclasses. The polymorphism allows the members

of subclasses to appear as and to be used like the members of the superclass. The inharitance of the

Java language is on the theoretical level type inharitance. The SQL database products in generally

 row

column

 Table:

4

don't support type or table inharitance and if they support it, they don't follow standard syntax. The

SQL databases also lack an standardized way to present polymorphic assosiations.

3. Problem of identity

Java-objects define two different notions of sameness:

- Object identity (roughly equivalent to memory location, checked with a==b).

- Equality as determined by the implementation of the equals() method.

The identity of a database row is expressed as the primary key. Neither equals() nor == is naturally

equivalent to the primary key. In the context of persistence, identity is closely related to how the

system handles caching and transactions.

4. Problems relating to associations
In the domain model, associations represent the relationships between entities and associations are

used for navigation. The Java language represents associations using object references, but the

assosiations in relational databases are represented through the use of foreign keys.

Directionality joins inherently to object referencies. The associations between objects are

unidirectional pointers. When both end of the relationship has references to each other, the

association is bi-directional. All associations in a relational database are effectively bi-directional,

because the foreign keys are used to join tables and for projection,

The multiplicity of the unidirectional association is possible to determine by looking only on Java

classes. Java associations can have many-to-many multiplicity, table associations, on the other

hand, are always one-to-many or one-to-one. So many-to-many association can be inplemented in

the realtional database by using a new table for many-to-many association.

5. Problem of data navigation

Accessing data and navigating from one object to another is different in Java and in the relational

database. Accessing data in Java happens by navigating between objects through getter methods,

e.g. order.GetLineItem().getProduct(). Accessing data from the relational database and navigating

from one table to another with SQL requires joins between tables and performance of the queries

can be improve by minimizing the number of the request to the database.

4. Entity

An entity is a lightweight persistent domain object. Typically an entity class represent a table in a

relational database and each entity instance corresponds to a row in that table.

The entity class must be annotated with the Entity annotation. The entity class must be a top-level

class and must not be final. No methods or persistent instance variables of the entity class may be

final. The entity class must have a public or protected no-arg constructor. The entity class may have

other constructors as well.

Every entity must have a primary key, which identifies the entity unambiguously. . The primary key is

either a simple or composite primary key. A simple primary key must correspond to a single persistent

field or property of the entity class. The Id annotation must be used to denote a simple primary key.

The Table annotation specifies the primary table for the annotated entity. If no Table annotation is

specified for an entity class, the default name of the table is entity name. The Column annotation

5

specifies a mapped column of the relational table for a persistent property or field. Default name of the

column is the property or field name.

These annotations and types are in the package javax.persistence. XML metadata may be used as

an alternative to these annotations, or to override or augment annotations.

Entity example

Below is an entity class, Customer, which is mapped to the CUSTOMER table with the Table

annotation. Property id is the primary key, that is denoted with Id annotation before getId()

method. The persistent fields or properties are not annotated, so they are mapped to the corresponding

columns of the relational table.

import java.io.Serializable;

import javax.persistence.*;

@Entity

@Table(name = "CUSTOMER")

public class Customer implements Serializable{

 private int id;

 private String name;

 private String address;

 @Id

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String address) {

 this.address = address;

 }

 public Customer(){}

 public Customer(int id, String name, String address){

 this.id = id;

 this.name = name;

 this.address = address;

 }

}

The persistent state of an entity is represented either by persistent fields or by persistent properties. The

persistent fields are entity‘s instance variables and the persistent properties are JavaBeans-style

properties which are accessed by getter and setter methods. Instance variables must not be accessed

directly by clients of the entity, but they must be accessed only from within the methods of the entity

itself. So the state of the entity is available to clients only through the entity‘s methods—i.e., accessor

methods (get/set - methods) or other business methods.

The instance variables of a class must have private, protected or package visibility independent

of whether field access or property access is used. When property access is used, the property accessor

6

methods must be public or protected.

It is required that the entity class follows the method signature conventions for JavaBeans read/write

properties for persistent properties when property access is used. For single-valued persistent properties,

these method signatures are:

• T getProperty()

• void setProperty(T t)

Collection-valued persistent fields and properties must be defined in terms of one of the following

collection-

valued interfaces regardless of whether the entity class otherwise adheres to the JavaBeans

method conventions noted above and whether field or property access is used:

java.util.Collection, java.util.Set, java.util.List, java.util.Map.

If an entity instance is to be passed by value as a detached object (e.g., through a remote interface), the

entity class must implement the Serializable interface.

4.1 Embedded classes

An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike

entity instances, do not have persistent identity of their own. Instead, they exist only as part of the state

of the entity to which they belong. Embedded objects belong strictly to their owning entity, and are not

sharable across persistent entities.

Embeddable classes must adhere to the requirements specified above for entities with the exception

that embeddable classes are not annotated as Entity. Embeddable classes must be annotated as
Embeddable.

The entity class specifies a a persistent field or property, whose value is an instance of an embeddable

class, with the Empedded annotation.

Example.

The embeddable class Address is embedded into the Shipment entity.

Shipment

 - id

 - resipient

 - deliveryAddress

<<Entity>>

Address

 - street

 - zip

 - city

 - country

<<Class>>

embedded

Java code is below. The deliveryAddress field of the Shipment entity is annotated with

@Embedded and the embebbable class Address is annotated with @Embeddable.

@Entity

public class Shipment

{

 private int id;

 private String recipient;

 private String date;

7

 @Embedded

 private Address deliveryaddress;

 private Order order;

 .

 .

}

@Embeddable

public class Address

{

 private String street;

 private String city;

 private String zip;

 private String country;

 .

 .

}

8

5. Managing entities

5.1 Persistence context

A persistence context is a set of entity instances in which for any persistent entity identity there is a

unique entity instance. Within the persistence context, the entity instances and their life cycle is

managed by a particular entity manager. An EntityManager instance is associated with a persistence

context. The scope of the persistence context can either be the transaction, or can extend beyond lifetime

of a single transaction.

A Persistence context can be managed by the container or by the application.

By default, the lifetime of the container-managed persistence context has transaction scope, so the

persistence context ends when the transaction is committed or rolls back.

5.2 Entity Manager

EntityManager API is used to create and remove persistent entity instances, to find entities by

their primary key, and to query over entities. The main methods of the EntityManager are below:

public interface EntityManager

{

 void close();

 Query createNamedQuery(String name);

 Query createNativeQuery(String sqlString);

 Query createQuery(String qlString);

 <T> T find(Class<T> entityClass, Object primaryKey);

 void flush();

 <T> T merge(T entity);

 void persist(Object entity);

 void refresh(Object entity);

 void remove(Object entity);

 }

In the table below are the main methods of the EntityManager with descriptions.

Method of EntityManager Description

Persistence context

Entity instances with

 unique identity

EntityManager

9

void close() Close an application-managed entity manager.

<T> T find(Class<T> entityClass,

Object primaryKey)

Find by primary key.

void flush() Synchron ize the persistence context to the underlying database.

<T> T merge(T entity) Merge the state of the given entity into the current persistence context.

void persist(Object entity) Make an instance managed and persistent.

void remove(O bject entity) Remove the entity instance.

void refresh(O bject entity) Refresh the state of the instance from the database, overwriting

changes made to the entity, if any.

Query createQuery(String

qlString)

Create an instance of Query for executing a

Java Persistence query language statement.

Query createNativeQuery(String

sqlString)

Create an instance of Query for executing a native SQL statement,

Query createNamedQuery(String

name)

Create an instance of Query for executing a named query (in the Java

Persistence query language or in native SQL).

5.3 Persistence unit

The set of entities that can be managed by a given EntityManager instance is defined by a persistence

unit. A persistence unit defines the set of all classes that are related or grouped by the application, and

which must be collocated in their mapping to a single database.

A persistence unit is defined by persistence.xml file, that resides in the META-INF directory.

<persistence xmlns=http://java.sun.com/xml/ns/persistence

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:schemaLocation=http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd

 version="1.0">

 <persistence-unit name="rvvtest" transaction-type="RESOURCE_LOCAL">

 <properties>

 <!-- Scan for annotated classes and Hibernate mapping XML files -->

 <property name="hibernate.archive.autodetection" value="class, hbm"/>

 <!-- DB2 ExpressC V9.x -->

 <property name="hibernate.connection.driver_class"

 value="com.ibm.db2.jcc.DB2Driver"/>

 <property name="hibernate.connection.url"

 value="jdbc:db2://localhost:50000/TEST"/>

 <property name="hibernate.connection.username"

 value="RVV"/>

 <property name="hibernate.connection.password"

 value="test"/>

 <property name="hibernate.dialect"

 value="org.hibernate.dialect.DB2Dialect"/>

 <!-- JDBC connection pool (use the built-in) -->

 <property name="connection.pool_size" value="2"/>

 </properties>

10

 </persistence-unit>

</persistence>

5.4 States of entity instances

Object/relational mapping solutions don‘t only shield the developers from the details of the underlying

database management system, but they also offer state management of the entity objects.

The figure below describes states of an entity instance‘s life cycle.

The entity instance can have following states:

 New

After instantiating an entity with new() –operator the entity instance is in the new state. It has

no persistent identity and is not yet associated with a persistent context and database. The state

of the new instance is lost by garbage collection, when it has no referenced by any other object.

The persist() method of entity manager transfer the entity instance from the new state to

the managed state.

 Managed
A managed entity instance has a persistent identity and is currently associated with a persistence

context. It has a representation in the database. A managed instance has a primary key value set

as its database identifier. When the persistence context ends, the state of the instance transfers

from managed to detached.

 Detached
A detached entity instance is an instance with a persistent identity but the instance is not (or no

new

managed

detached

removed

new()

persist()

merge()

remove()

persist()

find()

Query:

getResultList()

Query:

getSingleResult()

Persistence

context

ends

garbage

garbage

garbage

11

longer) associated with a persistent context. Its state is no longer guaranteed to be synchronized

with the database state. A detached instance continues to live outside of the persistent context

and its content can be modified in the program. The merge() method of the entity manager

brings the detached instance back into the managed state.

 Removed

The entity instance can be deleted by calling remove() method of the entity manager, which

transfers the state from managed to removed. A removed entity instance is an instance with a

persistent identity, associated with a persistence context, that will be removed from the database

upon transaction commit.

6. Entity Relationships

The object-oriented domain model consists of business entities and relationships between entities.

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many. In

addition, the relationships have a direction: the relationships can be unidirectional or bidirectional.

The figure below describes some business entities and relationships: Order entity has one-to-one

relationships to Customer entity and to Shipment entity. The relationship between Order and

Customer is unidirectional whereas relationship between Order and Shipment is birectional. In

addition, the Order entity has bidrectional one-to-many relationship to LineItem entity and the

LineItem entity has unidirectional one-to-one relationship to Product entity.

Customer

<<Entity>>

Shipment

<<Entity>>

n

Order

<<Entity>>
11

1

1

1

1

LineItem

<<Entity>>
*

11

Product

<<Entity>>

11

Relationships must have an owning side. An unidirectional relationship has only an owning side. A

bidirectional relationship has both an owning side and an inverse (non-owning) side. The owning

side of a relationship determines the updates to the relationship in the database.

If there is an association between two entities, one of the following relationship modeling annotations

must be applied to the corresponding persistent property or field of the referencing entity: OneToOne,

OneToMany, ManyToOne, ManyToMany.

12

Relations Mapping Defaults

6.1 One-to-one relationship

An one-to-one relationship can be unidirectional or bidirectional. The unidirectional relationship is

represented in section 6.1.1 and the bidirectional one in section 6.1.2.

6.1.1 Unidirectional one-to-one relationships

Assuming that:

Entity A references a single instance of Entity B.

Entity B does not reference Entity A.

A unidirectional relationship has only an owning side, which in this case must be Entity A.

The following mapping defaults apply:

Entity A is mapped to a table named A.

Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the concatenation

of the following: the name of the relationship property or field of entity A; "_"; the

name of the primary key column in table B. The foreign key column has the same type as the

primary key of table B and there is a unique key constraint on it.

Example

There are Order and Customer entities and an unidirectional one-to-one relationship between them

(figure below). The id, orderDate and amount fields of the Order entity and all fields (id, name,

address) of the Customer entity are persistent fields. In addition, the Order instance has a

customer relationship field/property annotated with the OneToOne annotation, which references to

a Customer instance. Because the relationship is unidirectional, the Customer instance has no

reference to the Order instance. See the Java codes of the both entities below.

Customer

<<entity>>

 id

 name

 address

Order

<<entity>>

 id

 orderDate

 amount

 customer

11

Mapping of the entities to the relational model can be seen in the figure below. The Order entity of

the object model is mapped to the ORDERHH table of the relational model. The Customer entity is

mapped to CUSTOMER table. The persistent properties of the both classes are mapped to the default

columns of the tables.

Notice the mapping of the relationship to the foreign key column (CUSTOMER_ID) of the owning side

of the relationship (ORDERHH table).

 ORDERHH table CUSTOMER table

13

The Java program codes are below.

The Order entity is mapped to ORDERHH table. (Order is a reserved term in the SQL and cannot be

the name of a relational table.) The id property is annotated to the primary key by adding the Id

annotation before the getId() method. With the Id annotation can be a GeneratedValue

annotation, which specifies a generation strategy for the values of the primary key.

GenerationType.Auto indicates that the persistence provider should pick an appropriate strategy

for the particular database. See the OneToOne annotation before the getCustom() method (=

custom property).

import java.io.Serializable;

import javax.persistence.*;

@Entity

@Table(name = "ORDERHH")

public class Order implements Serializable {

private int id;

private String orderDate;

private double amount; /* euros */

private Customer customer;

@Id @GeneratedValue(strategy=GenerationType.AUTO)

public int getId() {

 return id;

}

public void setId(int id) {

 this.id = id;

}

public Date getOrderDate() {

 return orderDate;

}

public void setOrderDate(Date orderDate) {

 this.orderDate = orderDate;

}

public double getAmount() {

 return amount;

}

public void setAmount(double amount) {

 this.amount = amount;

}

@OneToOne

public Customer getCustomer() {

 return customer;

}

public void setCustomer(Customer customer) {

 this.customer = customer;

}

public Order() {

 orderDate = new java.util.Date();

14

 amount = 0.0;

}

}

The Customer class is below. The Id annotation can be before the id field or id property

(getId()).

import java.io.Serializable;

import javax.persistence.*;

@Entity

@Table(name = "CUSTOMER")

public class Customer implements Serializable {

@Id

private int id;

private String name;

private String address;

public int getId() {

 return id;

}

public void setId(int id) {

 this.id = id;

}

public String getName() {

 return name;

}

public void setName(String name) {

 this.name = name;

}

public String getAddress() {

 return address;

}

public void setAddress(String address) {

 this.address = address;

}

public Customer(){}

public Customer(int id, String name, String address){

 this.id = id;

 this.name = name;

 this.address = address;

}

}

15

The following ManageOrder program creates some Customer and Order instances with

relationship between them. In addition the program make some queries to Order and Customer

instancies. The query language is represented in the chapter 7.

import javax.persistence.*;

import org.dbtech.entity.Customer;

import org.dbtech.entity.Order;

public class ManageOrder

{

 @PersistenceContext

 private EntityManager em;

 public void createCustomers(){

Customer customer = null;

customer = new Customer(1001, "Company X", "Ramblas 5, Barcelona");

em.persist(customer);

 customer = new Customer(1002, "Company Y", "Corso 6, Roma");

em.persist(customer);

customer = new Customer(1003, "Company Z", "Broadway 118, New York");

em.persist(customer);

}

public boolean createOrder(int customerId){

 Customer customer = em.find(Customer.class, customerId);

 if (customer == null) return false;

 Order order = new Order();

 order.setCustomer(customer);

 em.persist(order);

 return true;

}

public List<Order> listAllOrders(){

Query q = em.createQuery("SELECT o FROM Order o");

return (List<Order>)q.getResultList();

}

public List<Order> listOrdersOfCustomer(int customerId){

Query q = null;

q = em.createQuery("SELECT o FROM Order AS o JOIN o.customer AS c

 WHERE c.id = ?1");

q.setParameter(1, customerId);

return (List<Order>)q.getResultList();

}

}

6.1.2 Bidirectional one-to-one relationship

Objects with bidirectional relations will be mapped to the relational model in the same way than in the

unidirectional case.

Example

Order and Shipment entities have a bidirectional on-to-one relationship (figure below). The Order

entity has shipment relationship field/property annotated with OneToOne, which refers to

Shipment instance and the Shipment entity has order relationship field/property annotated with

OneToOne, which refer to Order instance.

16

Shipment

<<entity>>

 id

 destination

 date

 order

Order

<<entity>>

 id

 orderDate

 amount

 customer

 shipment

1 11 1

The bidirectional relationships must have a owner side. Order class is the owner side of this example.

Thus the relationship is mapped to the SHIPMENT_ID foreign key of the Orderhh table.

ORDERHH table SHIPMENT table

Java code of the Order and Shipment classes are below. Notice OneToOne annotation of the

order relationship property of Shipment class has mappedBy element, that indicates the field of

the owning side that owns the relationship. This element is only specified on the inverse (non-owning)

side of the relationship.

import java.io.Serializable;

import javax.persistence.*;

@Entity

@Table(name = "ORDERHH")

public class Order implements Serializable {

private int id;

private String orderDate;

private double amount; /* euros */

private Customer customer;

private Shipment shipment;

@Id @GeneratedValue(strategy=GenerationType.AUTO)

public int getId() {

 return id;

}

public void setId(int id) {

 this.id = id;

}

public Date getOrderDate() {

 return orderDate;

}

public void setOrderDate(Date orderDate) {

 this.orderDate = orderDate;

}

public double getAmount() {

 return amount;

}

public void setAmount(double amount) {

 this.amount = amount;

}

@OneToOne

public Customer getCustomer() {

 return customer;

}

public void setCustomer(Customer customer) {

17

 this.customer = customer;

}

@OneToOne

public Shipment getShipment() {

 return shipment;

}

public void setShipment(Shipment shipment) {

 this.shipment = shipment;

}

public Order() {

 orderDate = new java.util.Date();

 amount = 0.0;

}

}

The Java code of the Shipment class is following.

import javax.persistence.*;

@Entity

public class Shipment {

private int id;

private String destination;

private String date;

private Order order;

@Id @GeneratedValue(strategy=GenerationType.IDENTITY)

public int getId() {

 return id;

}

public void setId(int id) {

 this.id = id;

}

public String getDestination() {

 return destination;

}

public void setDestination(String destination) {

 this.destination = destination;

}

public String getDate() {

 return date;

}

public void setDate(String date) {

 this.date = date;

}

@OneToOne(mappedBy="shipment")

public Order getOrder() {

 return order;

}

public void setOrder(Order order) {

 this.order = order;

}

}

6.2 One-to-many/many-to-one relationships

Also one-to-many relationships can be bidirectional (6.2.1) or onedirectional (6.2.2).

6.2.1 Bidirectional many-to- one/one-to-many relationship

18

Assuming that:

Entity A references a single instance of Entity B.

Entity B references a collection of Entity A.

AB 11 **

Entity A must be the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table named A.

Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the

concatenation of the following: the name of the relationship property or field of entity A; "_";

the name of the primary key column in table B. The foreign key column has the same type as the

primary key of table B.

Example.

Order and LineItem entities have a bidirectional one-to-many relationship (figure below).The

LineItem class is the owner of the relationship.

LineItem

 id

 product

 amount

 price

 order

Order

 id

 orderDate

 amount

 customer

 lineItems

11 **

The Order class is mapped to the ORDERHH table and the LineItem class is mapped to the

LINEITEM table. The relationship is mapped to Order_Id column of the LINEITEM table.

ORDERHH table LINEITEM table

Java code of Order and LineItem classes are below. The Order class has the

Collection<LineItem> type lineItems relationship property with OneToMany annotation

with the mappedBy element, that indicates the field of the owning side that owns the relationship. This

element is only specified on the inverse (non-owning) side of the relationship.

import java.io.Serializable;

import java.util.Collection;

import java.util.Date;

import javax.persistence.*;

19

@Entity

@Table(name = "ORDERHH")

public class Order implements Serializable {

private int id;

 private String orderDate;

 private double amount; /* euros */

 private Customer customer;

 private Collection<LineItem> lineItems;

 @Id @GeneratedValue(strategy=GenerationType.AUTO)

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getOrderDate() {

 return orderDate;

 }

 public void setOrderDate(String orderDate) {

 this.orderDate = orderDate;

 }

 public double getAmount() {

 return amount;

 }

 public void setAmount(double amount) {

 this.amount = amount;

 }

 @OneToOne

 public Customer getCustomer() {

 return customer;

 }

 public void setCustomer(Customer customer) {

 this.customer = customer;

 }

 @OneToMany(cascade=CascadeType.ALL,fetch=FetchType.EAGER,mappedBy="order")

 public Collection<LineItem> getLineItems() {

 return lineItems;

 }

 public void setLineItems(Collection<LineItem> lineItems) {

 this.lineItems = lineItems;

 }

 public void addLineItem(LineItem lineitem){

 lineItems.add(lineitem);

 }

 public Order() {

 orderDate = new Date();

 amount = 0.0;

 }

}

Java code of LineItem class is below. The LineItem class has order relationship property

annotated with ManyToOne.

import java.io.Serializable;

import javax.persistence.*;

@Entity

public class LineItem implements Serializable {

 private int id;

 private String product;

 private double amount;

 private double price;

 private Order order;

20

 @Id@ GeneratedValue(strategy=GenerationType.AUTO)

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getProduct() {

 return product;

 }

 public void setProduct(String product) {

 this.product = product;

 }

 public double getAmount() {

 return amount;

 }

 public void setAmount(double amount) {

 this.amount = amount;

 }

 public double getPrice() {

 return price;

 }

 public void setPrice(double price) {

 this.price = price;

 }

 @ManyToOne

 public Order getOrder() {

 return order;

 }

 public void setOrder(Order order) {

 this.order = order;

 }

 public LineItem(){}

 public LineItem(String product, double amount, double price){

 this.product = product;

 this.amount = amount;

 this.price = price;

 }

}

6.2.2 Unidirectional many-to- one relationships

Assuming that:

Entity A references a single instance of Entity B.

Entity B references a collection of Entity A.

Entity A must be the owner of the relationship.

The following mapping defaults apply:

Entity A is mapped to a table named A.

Entity B is mapped to a table named B.

Table A contains a foreign key to table B. The foreign key column name is formed as the

concatenation of the following: the name of the relationship property or field of entity A; "_"; the

name of the primary key column in table B. The foreign key column has the same type as the

primary key of table B.

6.3 Many-to-many relationsip

21

Assuming that:

Entity A references a collection of Entity B.

Entity B references a collection of Entity A.

Entity A is the owner of the relationship.

n
BA

n

The following mapping defaults apply:

Entity A is mapped to a table named A.

Entity B is mapped to a table named B.

There is a join table that is named A_B (owner name first). This join table has two foreign key

columns. One foreign key column refers to table A and has the same type as the primary key of

table A. The name of this foreign key column is formed as the concatenation of the following:

the name of the relationship property or field of entity B; "_"; the name of the primary key

column

in table A. The other foreign key column refers to table B and has the same type as the primary

key of table B. The name of this foreign key column is formed as the concatenation of the

following: the name of the relationship property or field of entity A; "_"; the name of the

primary

key column in table B.

Example

Course and Student entities have a bidirectional many-to-many relationship: a course can have

many students and a student can participate in many courses. For the relationship the Course class has

the students relationship property and the Student class has the courses relationship property.

Because the relationship is many-to-many, both relationship properties are Collection type. Other

properties of the entity classes are persistent properties. The Student entity is the owner of this

relationship.

n
Student

 id

 name

 courses

Course

 code

 name

 points

 students

n

The entities with the relationship is mapped to the relation model in the following way. The Course

entity is mapped to the COURSE table, the Student entity is mapped to the STUDENT table and the

bidirectional many-to-many relationship is mapped to the STUDENT_COURSE join table (owner name

first) with foreign key columns STUDENTS_ID and COURSES_CODE. (figure below)

22

 COURSE table STUDENT table STUDENT_COURSE table

The Java code of the Course class with code, name and points persistent properties and

students relationship property annotated with the ManyToMany annotation and the mappedBy

element is below.

import java.io.Serializable;

import java.util.Collection;

import javax.persistence.*;

@Entity

public class Course implements Serializable{

 private String code;

 private String name;

 private double points;

 private Collection<Student> students;

 @Id

 public String getCode() {

 return code;

 }

 public void setCode(String code) {

 this.code = code;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public double getPoints() {

 return points;

 }

 public void setPoints(double points) {

 this.points = points;

 }

 @ManyToMany(mappedBy="courses")

 public Collection<Student> getStudents() {

 return students;

 }

 public void setStudents(Collection<Student> students) {

 this.students = students;

 }

 public void addStudent(Student student){

 students.add(student);

 }

 public void dropStudent(Student student){

 students.remove(student);

 }

 public Course() {}

 public Course(String code, String name, double points) {

23

 this.code = code;

 this.name = name;

 this.points = points;

 }

}

The Java code of the Student class with id and name persistent properties and courses

relationship property annotated with the ManyToMany annotation is below.

import java.io.Serializable;

import java.util.Collection;

import javax.persistence.*;

@Entity

public class Student implements Serializable {

 private String id;

 private String name;

 private Collection<Course> courses;

 @Id

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 @ManyToMany

 public Collection<Course> getCourses() {

 return courses;

 }

 public void setCourses(Collection<Course> courses) {

 this.courses = courses;

 }

 public void addCourse(Course course){

 courses.add(course);

 }

 public void dropCourse(Course course){

 courses.remove(course);

 }

 public Student(){}

 public Student(String id, String name){

 this.id = id;

 this.name = name;

 }

}

7. Query Language

The Java Persistence query language is a string-based query language used to define queries over

entities, their persistent state and relationships. Unlike SQL, this query language is truly platform-

independent and object aware. This means that the entities and their fields are referenced by their names,

24

rather than having to know the details of the table and column names in the underlying relational

database.

The query language uses the abstract persistence schema of entities, including their embedded objects

and relationships, for its data model, and it defines operators and expressions based on this data model.

It uses a SQL-like syntax to select objects or values based on abstract schema types and relationships.

The syntax of the SELECT statement is following:

SELECT clause1

FROM clause2

[WHERE clause3]

[GROUP BY clause4]

[HAVING clause5]

[ORDER BY clause6]

The SELECT and FROM clauses are obligatory and the other clauses are optionally. The SELECT clause

determines the type of the objects or values to be selected. The FROM clause provides declarations that

designate the domain to which the expressions specified in the other clauses of the query apply. The

WHERE clause is used to restrict the results that are returned by the query. The GROUP BY clause

allows query results to be aggregated in terms of groups. The HAVING clause allows filtering over

aggregated groups. The ORDER BY clause is used to order the results that are returned by the query.

Example queries

Simple queries

The basic SELECT query is

SELECT [DISTINCT] p

FROM Product p

The result of the query is all products. The SELECT clause designates the return type of this query to be

of type Product. The optional DISTINCT keyword eliminates duplicate values. The FROM clause

declares an identification variable p. The above FROM clause is the abbreviation of FROM Product

AS p clause. The identification variables can be declared only in the FROM clause, they can instead be

used also in SELECT and WHERE clauses.

The following SELECT query has a WHERE clause

SELECT p

FROM Product p

WHERE p.productGroup = ‘Wines’

The result of this query is a list of products, whose product group is Wines. The WHERE clause

contains a path expression with the identification variable p followed by the navigation operation (.)

and the persistent state field productGroup , whose value is the value of the productGroup field

of the Product entity. This value is compared to the literal string ‗Wines‘ and the value of the

comparison (boolean value: true or false) determines, whether the entity is in the result of the

query.

25

The following SELECT query contains the WHERE clause with comparison operators (>= and <) and

logical operator (AND).

SELECT p

FROM Product p

WHERE p.price >= 0.0 AND p.price < 500.00

The result of the query is a list of products, whose price is equal or more than 0.0 and less than 500.00.

The query can have input parameters, which can only be used in the WHERE clause or HAVING clause

of a query. A named parameter is denoted by an identifier that is prefixed by the ":" symbol. The

SELECT query below has :pgroup input parameter.

SELECT p

FROM Product p

WHERE p.productGroup = :pgroup

The value of the input parameter is given by calling setParameter() method of Query object.

There is another type of input parameter, a positional parameter, which is designated by the question

mark (?) prefix followed by an integer, for example: ?1. The following query has two positional

parameters.

SELECT p

FROM Product p

WHERE p.price >= ?1 AND p.price < ?2

Queries navigating to related entities

Two entities can be joined with JOIN keyword for navigating from an entity to another via a one-to-one

relationship field. The following SELECT query navigates between Order and Customer entities via

one-to-one customer relationship field of Order entity.

SELECT o

FROM Order o JOIN o.customer c

WHERE c.name = ‘HAAGA-HELIA’

The result of the query is the orders of the customer, whose name is HAAGA-HELIA. The FROM clause

is the abbreviation of FROM Order AS o JOIN o.customer AS c.

In one-to-many relationship, the multiple side consists of a collection of entities. A collection member

declaration is declared by using IN operator. The following SELECT query navigates from the Order

entity via its many-to-one relationship field lineItems to the LineItem entity and further to the

Product entity.

SELECT o

FROM Order o, IN (o.lineItems) l JOIN l.product p

WHERE p.code = ‘W0995’

26

The SELECT clause defines the types of the objects or values returned by the query. All the SELECT

clauses of above queries have defined, that the type of the query result is the type of the entity. The

SELECT query can return also persistent fields of the entity. The following SELECT query returns the

names of the products ordered by Pedro Cavador.

SELECT p.name

FROM Order o, IN (o.lineItems) l JOIN l.product p JOIN o.customer c

WHERE c.name = ‘Pedro Cavador’

This is a short introduction to the JPA query language, which is a comprehensive object based query

language. More information can be found in the JPA 2.0 Specification and in other literature.

8. Inheritance of entity

An entity may inherit from another entity class. Entities support inheritance, polymorphic associations,

and polymorphic queries. Both abstract and concrete classes can be entities. Both abstract and concrete

classes can be annotated with the Entity annotation and queried for as entities. An abstract entity class

cannot have instancies.

Entities can extend non-entity classes and non-entity classes can extend entity classes.

Mapping of class hierarchies

How to map a class hierarchy to the relational database?

There are three basic strategies that are used when mapping a class or class hierarchy to a relational

database:

• a single table per class hierarchy (default strategy)

• a joined subclass strategy, in which fields that are specific to a subclass are mapped to a

separate table than the fields that are common to the parent class, and a join is performed to

instantiate the subclass.

• a table per concrete entity class

Entity

Non-Entity

Entity

Entity

Non-Entity

Entity

Entity

Entity Entity

27

Single table per class hierarchy

All the classes in a hierarchy are mapped to a single table. The table has a column that

serves as a ―discriminator column‖, that is, a column whose value identifies the specific subclass to

which the instance that is represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities and for

queries that range over the class hierarchy.

Joined subclass

In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each

subclass is represented by a separate table that contains those fields that are specific to the subclass (not

inherited from its superclass).

This strategy provides support for polymorphic relationships between entities.

Table per concrete entity class

Each class is mapped to a separate table. All properties of the class, including inherited properties, are

mapped to columns of the table for the class.

This strategy provides poor support for polymorphic relationships.

Annotation of mapping class hierarchy

The mapping of class hierarchies is specified through metadata. Inheritance annotation defines the

inheritance strategy to be used for an entity class hierarchy. It is specified on the entity class that is the

root of the entity class hierarchy. Inheritance annotation has a strategy element, which is used for

setting the entity inheritance hierarchy strategy. For the inheritance strategy options JPA has an

InheritanceType class with constant values:

InheritanceType.SINGLE_TABLE

InheritanceType.JOINED

 InheritanceType.TABLE_PER_CLASS.

SINGLE_TABLE is default setting of inheritance stategy.

28

Example.

The class model consists of a super class Person and its two subclasses Employee and Customer.

Person

<<Entity>>

Employee

<<Entity>>

Customer

<<Entity>>

The entities in Java are below:

Person:

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)

public class Person implements Serializable {

 private String code;

 private String name;

 private String address;

 private String degree;

 private String gender;

 @Id

 public String getCode() {

 return code;

 }

 public void setCode(String code) {

 this.code = code;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getAddress() {

 return address;

 }

 public void setAddress(String address) {

 this.address = address;

 }

 public String getGender() {

 return gender;

 }

 public void setGender(String gender) {

 this.gender = gender;

 }

 public String getDegree() {

 return degree;

 }

 public void setDegree(String degree) {

 this.degree = degree;

 }

 public Person() {}

}

29

Employee:

@Entity

public class Employee extends Person{

 private String title;

 private String department;

 private double salary;

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

 public String getDepartment() {

 return department;

 }

 public void setDepartment(String department) {

 this.department = department;

 }

 public double getSalary() {

 return salary;

 }

 public void setSalary(double salary) {

 this.salary = salary;

 }

}

Customer:

@Entity

public class Customer extends Person {

 private String type;

 private String preference;

 private String comment;

 public String getType() {

 return type;

 }

 public void setType(String type) {

 this.type = type;

 }

 public String getPreference() {

 return preference;

 }

 public void setPreference(String preference) {

 this.preference = preference;

 }

 public String getComment() {

 return comment;

 }

 public void setComment(String comment) {

 this.comment = comment;

 }

}

Inheritance strategy SINGLE_TABLE of JPA maps all three classes to a relational table with the

default name PERSON, which is the name of root class of the class hierarchy.

The name of the first column of the PERSON table is DTYPE, which describes the class of the entity

instance. Every fields of every classes of the whole class hierarchy is mapped to the columns of a table.

The unused columns of the rows in the table has value null.

30

Referencies

Bauer, C. & King, G. 2007. Java Persistence with Hibernate. Manning Publication Co.

King G., Bauer C., Andersen M. R., Bernard, E. & Ebersole S. 2009. Hibernate Reference

Documentation. Red Hat Middleware. (http://docs.jboss.org/hibernate/core/3.3/reference/en/html/)

Sriganesh, R., P. 2006. Mastering Enterprise JavaBeans 3.o. Wiley Publishing, Inc.

Sun Microsystems. 2009. JSR 317: Java Persistence API, Version 2.0. Final Release.

