
Martti Laiho 1

Introduction to

SQL Transactions

for teachers, trainers and application developers

www.DBTechNet.org

Disclaimer

This project has been funded with support from the European Commission. This publication [communication] reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein.

DBTech VET

Martti Laiho

martti.laiho@haaga-helia.fi

Areas in Database Technologies

DBTech Pro

Helia / Martti Laiho and Kari Silpiö

Operative Business

Data

Warehousing

Management &

Decision

applications

DBMS

infra structure, servers, middleware

Analysis

& Design

Application development

OLAP &

Data Mining

DB modelling & design

DB implemetation

Data Access

DB administration

DSS

Architectures

and technologies

DBMS

OLTP

System administration

ETL

Big Data

SQL

Transactions

OLTP - Theories and Practice?

Martti Laiho 3

applications

DB2

Relational

Theory
Serializability

Theory
SQL Standard

ACID Principle

Pyrrho

- ”But we don’t play

by the books”

Application developers

? ?

applications
application

OracleSQL Server MySQL PostgreSQL

Contents

• Database laboratory: DB2, Oracle, MySQL/InnoDB, PostgreSQL,...

• Concepts:
– SQL-server, SQL-client, SQL-session

– Client/Server dialogue: request, result, diagnostics

• SQL transaction
– Autocommit mode, Implicit/explicit start of transaction

– Commit: new consistent state, durability

– Rollback: atomicity, transaction recovery

– Consistency: constraints, diagnostics, exception handling

– Diagnostics: SQLcode, SQLSTATE, ..

• Single-user experiments

• Concurrency: anomalias

• ACID principle: isolation?

• Isolation levels

• Concurrency Control Mechanisms: MGL, MVCC

• Multi-user experiments

• Some ”Best Practices”

Martti Laiho 4

Lesson 1

Lesson 2

VirtualBox DebianDB

Martti Laiho 5

A sample MySQL test

Martti Laiho 6

A Map on Data Access Technologies

database

DBMS

Server-side support on languages

and transaction protocol

API level

JDBC

Hibernate

JPA

JavaEE

Java SE

ADO.NET

C#

LINQ

OCI

PHP

.NET languages

Ruby

on Rails

- basic models

- cursors

1. Reliability!

2. Security!

3. Performance!

Frameworks & Methodologies

OOP level

Ruby

EDM

Languages and data

• SQL

• XQuery: XML

• JSON

• RDF

ODBC, CLI jQuery etc..

- ORM technologies

JavaScript

REST

C/S formats and protocols

SQL Transactions in Reliable Applications

Martti Laiho

SQL Transaction

Begin work

actions ..

...

Commit / Rollback

“Business transaction

=> Use case

=> User transaction => Sequence of SQL transactions

Database in

consistent state Is a Logical Unit of Work (LUW)

Ideally with the ACID properties

- Atomicity

- Consistency

- Isolation

- Durability

Martti Laiho 1998

Database in

consistent state

Context:

SQL transaction

Martti Laiho

Problems and need for Transactions

• Today society, infra structures, business, and every day life of

citizens are dependant on ICT and software using OLTP databases,

which provide the most reliable services for storing and retrieving

the needed data

• However, inproper access to database services results in erroneous

or missing data causing difficulties, lost business, etc

– Missing orders, shipments, payments, ..

– Double-bookings, double-invoicing, ..

– Delays, erroneous information, ..

– even catastrophes

• Professional use of database services avoids these problems

accessing database only by well-designed SQL transactions which

are the basic building blocks of fault-tolerant applications

Martti Laiho 11

Server

database

Data

access

client

Driver

JDBC / ODBC /..

Data access

API

”SQL Command” i.e. service

request

response (diagnostics)

Service

processing

Client-side

data cache of

resultset

Client-side

cache of

resultset

Data cache

”bufferpool”

exception

exception

Data row or flow of the resultset

on errors

Optimized

execution plans

• Data

• Stored procedures

• Execution plans

Application

Client / Server Dialogues

Client protocols:

• Shared Memory

• TCP/IP

• named pipes

SQL-server, SQL-client, SQL-connection, SQL-session

SQL-command i.e. service request processing

Diagnostics: SQLcode, SQLSTATE

Martti Laiho 13

class subclass

Successful execution 0 0 0 0 0

Warning 0 1 n n n

No data 0 2 0 0 0

. . .
Transaction rollback 4 0 0 0 0

0 0 1 Serialization failure

0 0 2 Integrity constraint violation

0 0 3 Statement completion unknown

0 0 4 Triggred action exception

etc - lots of standardized and implementation dependent codes

ISO SQL-89 SQLcode: Integer:

100 No data

0 successful execution

< 0 errors

ISO SQL-92 SQLSTATE: String of 5 characters:

ISO SQL:1999 Get Diagnostics …
List of diagnostic items, including SQLSTATE and

number of rows. Only few implementations this far

Martti Laiho 14

Structures for using Diagnostics

DB2 SQL:

Oracle PL/SQL:

Transact-SQL of SQL Server:

compare with Java:

ISO SQL: SET TRANSACTION

XX

SET [LOCAL] TRANSACTION <mode>, …
<mode> ::= [READ ONLY | READ WRITE] |

[READ UNCOMMITTED |
READ COMMITTED |
REAPEATABLE READ |
SERIALIZABLE] |

[DIAGNOSTICS SIZE <integer>]

SET TRANSACTION tunes the attributes for following transaction.
It cannot be used in an active transaction.

Diagnostics per SQL command consists of header and condition details.
Diagnostics size defines for how many condition details per SQL command
the server will reserve space in the diagnostics area in the transaction
context.

Source: Melton & Simon ”SQL:1999”

DIAGNOSTICS Items

Martti Laiho 16

<header> <detail>

(1) .. (<max diagnostics detail count>)

<SQL statement> ;

GET DIAGNOSTICS <target> = <item> [, . . .]

If SQLSTATE = . . .

SQL GET DIAGNOSTICS

XX

Example of getting diagnostics in MySQL 5.6:

INSERT INTO T (id, s) VALUES (2, NULL);
INSERT INTO T (id, s) VALUES (2, 'Hi, I am a duplicate');
mysql> INSERT INTO T (id, s) VALUES (2, 'Hi, I am a duplicate');

ERROR 1062 (23000): Duplicate entry '2' for key 'PRIMARY‘

GET DIAGNOSTICS @rowcount = ROW_COUNT;
GET DIAGNOSTICS CONDITION 1

@sqlstate = RETURNED_SQLSTATE,
@sqlcode = MYSQL_ERRNO ;

SELECT @sqlstate, @sqlcode, @rowcount;
mysql> SELECT @sqlstate, @sqlcode, @rowcount;

+-----------+----------+-----------+

| @sqlstate | @sqlcode | @rowcount |

+-----------+----------+-----------+

| 23000 | 1062 | -1 |

+-----------+----------+-----------+

1 row in set (0.00 sec)

Potential errors

Martti Laiho 18

database

Stored routine

”Begin transaction”

call subprogram

”<SQL commands>”

. . .

”COMMIT”

Rollback?

Rollback?

GET DIAGNOSTICS act_trans = TRANSACTION_ACTIVE

If TRANSACTION_ACTIVE = 1

then …

else

AutoCommit mode ?

”COMMIT” ?

COMMIT ?

back to

autocommit

mode ?

subprogram

<SQL statements>

”<SQL commands>”

”CALL <SQL routine>”

Diagnostics

SQL Transaction

Martti Laiho 20

SELECT …

if ..

INSERT …

if ...

UPDATE …

if ...

DELETE …

if …

…

COMMIT | ROLLBACK

Database

Transaction log

<implicit start> or <explicit start>

<explicit start> ::= BEGIN WORK

| BEGIN TRANSACTION

| START TRANSACTION

Martti Laiho 21

ACID SQL transaction

[{SET | START} TRANSACTION [READ ONLY | READ WRITE]

ISOLATION LEVEL {READ UNCOMMITTED |

READ COMMITTED |

REPEATABLE READ |

SERIALIZABLE }

[if ..]]

SET {UNIQUE | REFERENCIAL} CONSTRAINTS

{DEFERRED | IMMEDIATE }

[LOCK TABLE …]

SELECT …

if ..

INSERT …

if ...

UPDATE …

if ...

DELETE …

if …

SAVEPOINT spn

…

COMMIT | ROLLBACK

if ...

Database

Transaction log(s)

Isolation

Consistency

- by DBMS

- logical

Atomicity

Durability

ROLLBACK

• i.e. automatic transaction recovery is based on use of

transaction history which saves addresses and ”before

images” of all changed / deleted rows

• For inserted rows the ”before image” is empty

• In ROLLBACK operation the server simply restores the

before images of all rows affected by the transaction

back to the original addresses

• For more details, see the presentation

”Basics of SQL Transactions”

Martti Laiho 22

Control Buffers Data Buffer (Bufferpool)

Log Buffer

• Connections

• Transaction control

• Locking lists

• SQL cache, etc.

before & after images

Table pages

and

index pages

rewriting pages

at Checkpoints

x

Flush to log on

Commit/Rollback

to transaction logs
Database files

Database server (instance)

fetching

needed

pages

Archive of log history

LRU

DBMS services:
Listener

Server agents

Transaction manager

SQL engine (parser)

Security manager

Query Optimizer

Concurrency manager

(Lock manager)

Deadlock detector

Recovery manager

Relational engine

Memory manager

OpSys:

File manager

Disk manager

- Processes, threads and caches

Backup

Restore

and

Roll-forward recovery

of transactions

Database backups

A generic overview of a database server

Martti Laiho

Diagnostics needed after every SQL command

[Set Transaction ...]

[Begin Work]

if ..

Insert ..

if ..

Select ...

if ..

Update ..

if ..

Delete ..

if ..

Commit
if ..

Start Exceptions Errors Restart?

multiprogramming

- limit, timeout

syntax error in dynamic SQL

On plan re-optimizing

- Invalid objects/privileges

Serializability

- conflict

- deadlock

- timeout

Services of

- DBMS buffers, etc

- OpSys

- data communication

- HW problems

Integrity ?
- Uniqueness

- Referential

- Check

Not found ?

Integrity?

- ..

Not found ?

Rollback

deadlock?

timeout?

livelock?

..

[reconnect?]

Restart?

YES

YES

Martti Laiho 1998-2009

Martti Laiho 25

SQL Transaction Models

• Flat transaction

– ACID properties

• Atomicity (all or nothing!)

• Consistency (integrity constraints)

• Isolation (based on MGLCC, MVCC, or OCC concurrency control)

• Durability (persistency)

– Savepoints

• Atomicity in parts

– Isolation levels

• AC(I-)D - compromizing for performance

• Default for commands in the transaction

• Can be defined differently for cursors and single commands

• Nested transactions

• Chained transactions

Hierarchy of Transaction Concepts

Martti Laiho 26

Flat transaction

XA transaction

Nested tr.

user transaction

workflow trans.

business trans.

Use case

RVV transaction

Single connection trans.

(”local trans.”)

Sequence of programs, ”long trans.”

A program

distributed

”global trans.”

. .

Version dependent sequence

Chained ?

Atomic transaction

Differently behaving products

• As default in AUTOCOMMIT mode ?

• Implicit or explicit starts of transactions

• Implicit COMMIT on DDL ?

• Default isolation

• What is considered as error or Warning ?

– Value truncation, value overflow, …

• Error in command

– Rolls back the command

– Rolls back the command and discards commands until

end of transaction

– Rolls back the transaction

• Concurrency control mechanism

Martti Laiho 27

ISO/SQL xacts and product implementations

Single-user Transaction Experiments

• Students start their private copies of DebianDB

• Teacher demonstrates the first steps

making sure that all students can repeat every step

getting started with the experiment

• The same DBMS product is selected to be studied,

- for example MySQL/InnoDB

• A single SQL session is started in a terminal window

• Students make notes of the transaction experiments or

experiences are discussed

Martti Laiho 29

Experiments with help of the instructor

• 1.1

• 1.2

• 1.3

• 1.4

• 1.5

• 1.6

• 1.7

Martti Laiho 30

Competing Transactions in Multi-user Environment

Martti Laiho

Martti Laiho 32

• SQL standard defines Isolation Levels for transaction context

based on anomalies, without concerning the technologies

• Concurrency Control Implementations tuned by Isolation Levels:

– Optimistic Concurrency Control (OCC) 100% isolated

– Locking Schemes (MGL, LSCC) 0% ..100%

– Multi-Versioning (MVCC) %?

– Cursor level concurrency control,

SELECT .. FOR UPDATE

• Client-side

– Row Version Verification (RVV) aka. "Optimistic Locking"

Concurrency Control Technologies

Martti Laiho 33

Concurrency Problems

Typical anomalies (C J Date, Milton, SQL-92)

1 Lost Update Problem (solved?)

2 Uncommitted Dependency Problem (Dirty Read)

3 Inconsistent Analysis Problems

a) Decreasing Read Set (Non-repeatable Read)

b) Increasing Read Set (Phantoms)

Martti Laiho 34

1. The Lost Update Problem

account x:

balance 1000 €

transaction Btransaction A

C. J. Date: Lost Update

“I will take 200 €” “I will take 500 €”

1. Read account x

3. balance = balance -200

5. Write account x

2. Read account x

4. balance = balance -500

6. Write account x

time

”Tellers”

..Typical anomalies

Martti Laiho 35

1. The Lost Update Problem

account x:

balance 1000 €

transaction Btransaction A

C. J. Date: Lost Update

“I will take 200 €” “I will take 500 €”

1. Read account x

3. balance = balance -200

5. Write account x

2. Read account x

4. balance = balance -500

6. Write account x

time

”Tellers”

Lost update!

..Typical anomalies

Martti Laiho 36

Concurrency Control by S- and X-locks

Lock

request of

transaction B

to object o

Shared eXclusive

Shared Grant Wait !

eXclusive Wait ! Wait !

Lock of transaction A to object o

- S-lock grants read access to object

- X-lock grants write access to object

- X-lock request after getting S-lock is called

as lock promotion

Compatibility of S and X locks:
Locking granularity:

. . .

table

page

Row-level

Martti Laiho 37

1. The Lost Update Problem

account x:

balance 1000 €

transaction Btransaction A

C. J. Date: Lost Update

“I will take 200 €” “I will take 500 €”

1. Read account x

3. balance = balance -200

5. Write account x

2. Read account x

4. balance = balance -500

6. Write account x

time

”Tellers”
- Applying the locking scheme:

S-lock
S-lock

X-lock?

X-lock?

Wait !
Wait !

..Typical anomalies

Deadlock

A Cycle of Lock Waits

Modern DBMS systems will detect the deadlock

in some seconds (deadlock detection)

and solve the waiting cycle

- selecting the victim

- making automatic Rollback (not Oracle)

- send error message to the application

=> Application must react on the deadlock !

Martti Laiho 1998

T1 T2

Wait

Wait

T1 T2

Wait

Wait

Rollback

Martti Laiho

39

1. The Lost Update Problem

account x:

balance 1000 €

transaction Btransaction A

C. J. Date: Lost Update

“I will take 200 €” “I will take 500 €”

1. Read account x

3. balance = balance -200

5. Write account x

2. Read account x

4. balance = balance -500

6. Write account x

”Tellers”
- Applying the locking scheme:

S-lock
S-lock

X-lock?

X-lock?

Wait !
Wait !

Deadlock
detected

Rollback !Find a “victim” and

which solves the problem

..Typical anomalies

Martti Laiho

Martti Laiho 40

1. The Lost Update Problem

account x:

balance 1000 €

transaction Btransaction A

C. J. Date: Lost Update

“I will take 200 €” “I will take 500 €”

Read account x

balance = balance -200

Write account x

Read account x

balance = balance -500

Write account x

time

”Tellers”

Martti Laiho 1998

- solved by locking scheme:

S-lock

X-lock

Commit

Retry the transaction of B ?

..Typical anomalies

Martti Laiho 41

Dirty Read

account x:

balance 1000 €

transaction Btransaction A

“What is the current balance?” “I withdraw 500 €”

Read the balance

of account x

Read the balance of account x

balance = balance - 500

Update the balance of

account x

ROLLBACK

time

C.J. Date

..Typical anomalies

Non-Repeatable Read
C.J. Date

transaction Btransaction A

1. SELECT ... FROM table

WHERE ... ;

3. SELECT ... FROM table

WHERE ... ;

2. UPDATE table

SET c = ...

WHERE ... ;

DELETE FROM table

WHERE ... ;

…

COMMIT;

xxx
result set1

result set2

4. COMMIT;

Martti Laiho

Phantom Read

transaction Btransaction A

1. SELECT ... FROM table

WHERE ... ;

3. SELECT ... FROM table

WHERE ... ;

2. INSERT INTO table (..)

VALUES (...) ;

UPDATE …

SET col = <matching value>

WHERE ..

COMMIT;

result set1

result set2

4. COMMIT

Phantom row(s)

Martti Laiho

Martti Laiho 44

ACID SQL transaction

[{SET | START} TRANSACTION [READ ONLY | READ WRITE]

ISOLATION LEVEL {READ UNCOMMITTED |

READ COMMITTED |

REPEATABLE READ |

SERIALIZABLE }

[if ..]]

SET {UNIQUE | REFERENCIAL} CONSTRAINTS

{DEFERRED | IMMEDIATE }

[LOCK TABLE …]

SELECT …

if ..

INSERT …

if ...

UPDATE …

if ...

DELETE …

if …

SAVEPOINT spn

…

COMMIT | ROLLBACK

if ...

Database

Transaction log(s)

Isolation

Consistency

- by DBMS

- logical

Atomicity

Durability

Isolation Levels of ISO SQL

45

Anomalies:

Isolation

Level:

READ UNCOMMITTED

READ COMMITTED

REPEATABLE READ

SERIALIZABLE

Dirty Read

Possible !

NOT possible

NOT possible

NOT possible

Nonrepeatable

Read

Possible !

Possible !

NOT possible

NOT possible

Phantoms

Possible !

Possible !

Possible !

NOT possible

Lost Update

NOT possible

NOT possible

NOT possible

NOT possible

Isolation levels can be explained by objects and duration in S-locking

preventing only the transaction itself against certain anomalies,

but can’t prevent concurrent transactions from dirty reads, etc

i.e. can’t provide strict isolation as defined by Haerder and Reuter

Martti Laiho

Martti Laiho 46

Locking Scheme Concurrency
Control (LSCC)

Lock

request of

transaction B

to object o

Shared eXclusive

Shared Grant Wait !

eXclusive Wait ! Wait !

Lock of transaction A to object o

- S-lock grants read access to object

- X-lock grants write access to object

- X-lock request after getting S-lock is called

as lock promotion

Compatibility of S and X locks
Locking granularity:

. . .

table

page

row

Locking Mode is selected by
Optimizer

Access method?

Index scan Table scan

Update? Update?

IS-lock

on table

and page

IX-lock

on table

and page

S-lock

on table 1)

X-lock

on table

S-locks

on rows

to be read 1)

S-locks on rows

to be read 1)

X-locks on rows

to be updated

No Yes No Yes

1) depending on the isolation level

Martti Laiho 2007

Source:

IBM, Developerworks, Sanders

DB2 9 – Data concurrency

Management of Lock Records and Requests

lock

Hashrequest

Lock request

to object o

- object type (granule)

- ID of the object

- mode

. . .

Granted Lock (~ 100 bytes)
- Object ID, granule, mode
- owner of the lock

request . . Wait
queue

Wait
queue

Hash array

Too many records of row-level locks

=> Need to escalate to table-level locks

. . .

database

(tablespace)

table

(extent)

page

row

2.

Lock on row

1. Intent locks

IS for S on row

IX for X on row

Lock granules:

Other locks on index ranges, schemas

Multi-Granular Locking (MGL) scheme

- Sample variants of lock compatibility matrices

Shared locks (S) allow reading.

eXclusive locks (X) allow writing and

are kept up to end of transaction

eliminating lost updates.

SIX = S + IX

49Martti Laiho

Compatibility Matrix of SQL Server Locks
either GRANT or CNVT

For more information see:

SQL Server Books Online

Multi-Version Concurrency Control (MVCC)

51

. . .

atomic update

action:

2. "lock" the row

3. update the row…

. . .

Commit

1. copy the row

Table Temporary space

All concurrent

transactions

will see only

a copy in the

chain, either the

latest committed
(“READ COMMITTED”)

or the latest

committed at start

of the transaction
(SNAPSHOT)

Chain of

previous row

versions in the

scn timestamp

order

latest committed

row version

original row

location on a

page of the

table

scn
scn

scn

scn

Martti Laiho

Phantoms & ghosts in snapshot isolation (SI)

database

database

time
snapshot

database

snapshot

t1

t2

reporting

inserted / updated rows are

phantoms

deleted rows appear as ghosts

for the concurrent snapshots

snapshot
t3

tn

SI

SSI

 blind

overwriting

consistent

SI = snapshot isolation

SSI = ”serializable” snapshot isolation (using version verification)

Inserts

Updates

Deletes

…

=> Inconsistent snapshot

Concurrent transactions:

Martti Laiho 52

Snapshot (start point in time)

Martti Laiho 53

transaction Btransaction A

1. SELECT ... FROM table

WHERE ... ;

3. SELECT ... FROM table

WHERE ... ;

2. INSERT INTO table (..)

VALUES (...) ;

UPDATE …

SET col = <matching value>

WHERE ..

DELETE …

WHERE …

COMMIT;

result set1

result set2

= result set1

4. COMMIT

Start point in time

Snapshot

isolation

Phantoms and Ghosts of Snapshot

Martti Laiho 54

transaction Btransaction A

1. SELECT ... FROM table

WHERE ... ;

3. SELECT ... FROM table

WHERE ... ;

2. INSERT INTO table (..)

VALUES (...) ;

UPDATE …

SET col = <matching value>

WHERE ..

DELETE …

WHERE …

COMMIT;

result set1

result set2

= result set1

4. COMMIT

Start point in time

Snapshot

isolation

Insert phantom

update phantom
ghost

Inconsistencies of Snapshot

Martti Laiho 55

transaction Btransaction A

1. SELECT ... FROM table

WHERE ... ;

11. INSERT new

2. INSERT INTO table (..)

VALUES (...) ;

UPDATE …

SET col = <matching value>

WHERE ..

DELETE …

WHERE …

COMMIT;

result set

12. COMMIT

Start point in time

Snapshot

isolation

ghost

Insert phantom

update phantom

3. UPDATE old

4. DELETE old

5. UPDATE phantom

7. DELETE phantom

6. UPDATE ghost

8. DELETE ghost

9. INSERT over phantom

10. INSERT over ghost

Martti Laiho 56

Cursor Processing

• Solves the paradigm mismatch between

– Procedural Programming and

– (”Relational”) SQL databases

• Scrolling / Forward only

• Sensitive / insensitive (snapshot)

• Server-side / client-side cache

• Optimistic concurrency

• Scope: transaction / (holdable) multiple transactions

• Options (hints)

Martti Laiho 57

..Cursor Processing

resultset

Base tables

crs

DECLARE crs CURSOR FOR SELECT ….

OPEN crs

1.

2.
3.

FETCH crs

CLOSE crs

or COMMIT ;

Multi-user Transaction Experiments

• Students start their private copies of DebianDB

• Teacher demonstrates the first steps

making sure that all students can repeat every step

getting started with the experiment

• The same DBMS product is selected to be studied,

- for example MySQL/InnoDB

• Two concurrent SQL sessions are started in separate

terminal windows

• Students make notes of the transaction experiments or

experiences are discussed

Martti Laiho 58

Experiments on concurrency

• 2.2b

• 2.3

• 2.4

• 2.5

• 2.6

• 2.7

Martti Laiho 59

A Well-designed SQL Transaction

• Is an atomic, logical unit of work that either transfers the database

from a consistent state to another consistent state – or all its actions

need to be rolled back

• Is a short dialogue with the database server performing data

retrieval and/or data update task of some use case

• Does not contain any user intervention during the transaction

• Checks carefully diagnostics of the received data access services

• Handles the generated data access exceptions

• May contain transaction logic which depends on the received data or

diagnostics

• Is restarted on concurrency or connection failures but avoiding

livelocks

Martti Laiho 60

