INFORMATION VISUALIZATION

- RESEARCH PERSPECTIVE 😊

Zilina, May 14, 2009

JO UNI HUOTARI
PRINCIPAL LECTURER, PH.D.
SCHOOL OF TECHNOLOGY
MY PERSONAL BACKGROUND

• Born in Kuusamo, Finland
• M.Sc. 1991 (University of Oulu; Department of Information Processing Science)
• Ph.D. (econ.) 2005 (University of Jyväskylä; Department of Computer Science and Information Systems)
• Work experience: developing applications and teaching in a company of my own + other companies
CURRENT POSITION

• Currently working as a principal lecturer in [Jyväskylä University of Applied Sciences](https://jyu.fi) (School of Information Technology)

• Main teaching topics:
 – Database design and management
 – Project management

• Main research interests:
 – Information visualization
 – Graphical information systems models
 – Electronic portfolios

Zilina, May 2009
RESEARCH PROCESS (FOR PH.D.)

- **Field studies and surveys**
- **Participant observation**
- **Video recording and interviews**
- **Lab experiment**
- **Pilot studies**

Theory building:
- Development of new ideas, conceptual frameworks, and models

Observation:
- Analysis of secondary data sources

Experimentation:
- Research prototype 1
- Research prototype 2

Systems development

<table>
<thead>
<tr>
<th>Year</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper published</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>dissertation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jouni Huotari

Zilina, May 2009
Improving Graphical Information System Model Use with Elision and Connecting Lines

Jouni Huotari, Kalle Lyytinen, and Marketta Niemelä

ACM Transactions on Computer-Human Interaction (TOCHI)
Volume 10, Issue 4 (December 2003)

Zilina, May 2009

Jouni Huotari

Enhancing Graphical Information System Model

WITH VRML

IV CONFERENCE IN LONDON 2002

JOUNI HUOTARI AND MARKETTA NIEMELÄ
BACKGROUND FOR THE RESEARCH

- Information system (IS) specifications consist of a collection of design documents and diagrams.
- When the size and number of these documents increase, understanding relationships between them becomes difficult.
- During IS development, it is very important to find inconsistencies and other errors as early as possible.
- Designers, reviewers, and testers need to understand how design information relates in a larger context.
- Currently available CASE tools do not provide efficient techniques to visualise the design documents and graphical IS models in them.
EXAMPLE: TYPICAL ERD AND DFD

Entity-Relationship Diagram

Dataflow Diagram

Jouni Huotari
Zilina, May 2009
PROBLEMS IN CASE AND POTENTIAL VISUALISATION SOLUTIONS

<table>
<thead>
<tr>
<th>Problem type in CASE</th>
<th>Examples of problems in CASE</th>
<th>Examples of potential visualisation solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representational</td>
<td>Use of (hyper-) text, tables, matrices, or graphics; semi-structure → how to preserve object's position</td>
<td>Colour, size, position, shape</td>
</tr>
<tr>
<td>Conceptual</td>
<td>Storing and processing recursive structures; decomposition, explosion</td>
<td>Distortion, elision, intelligent zoom</td>
</tr>
<tr>
<td>Methodological</td>
<td>Horisontal and vertical consistency; traceability</td>
<td>Explicit cues, highlighting (brushing-and-linking)</td>
</tr>
<tr>
<td>Implementation</td>
<td>Repository support; versioning and configuration</td>
<td>Layers, rotation, stereo, 3D</td>
</tr>
</tbody>
</table>
EXAMPLE OF ERD AND DFD WITH COLORS AND INTEGRATING CUES
VRML IMPLEMENTATION

• **Visible lines** between different types of diagrams (to enable horizontal consistency checking)

• **LOD** and **scripting** for elision: parts of the hierarchical structure are hidden by collapsing them into icons
 – click symbol (JavaScript, ROUTE, and TouchSensor),
 – by choosing a predefined viewpoint that is inside a LOD, or
 – "flying" inside a LOD's effective area

• **PROTO**: efficient way to reduce the length of the code

• **Billboard**: text is always facing the reader
• 3D v.
2D VS. 3D DIAGRAMS, AN EXPERIMENT
HUOTARI, LYYTINEN & NIEMELÄ (2004)
EXPERIMENT

• Case: university student register system
• 102 visual symbols and their inter-relationships indicated by arrows
• One-wall CAVE (Cave Automatic Virtual Environment)
• 105 subjects randomly assigned to the five conditions, 21 participants per condition
• 11 information search tasks
CONDITIONS

<table>
<thead>
<tr>
<th>Traditional: multiple separate diagrams on uncolored paper sheets</th>
<th>Large-screen: like traditional but diagrams are colored and shown on a large screen</th>
<th>2D visual cues: like “Large-screen” but visual connecting cues (lines and elision) are added</th>
<th>3D visual cues: like “2D visual cues” but with 3D objects and layout</th>
<th>3D visual cues with stereo: like “3D visual cues” but with stereo effect</th>
</tr>
</thead>
</table>

Zilina, May 2009

Jouni Huotari
RESULTS

<table>
<thead>
<tr>
<th>Information search tasks</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paper – no visual cues</td>
</tr>
<tr>
<td></td>
<td>LS – no visual cues</td>
</tr>
<tr>
<td></td>
<td>LS 2D – visual cues</td>
</tr>
<tr>
<td></td>
<td>LS 3D – visual cues</td>
</tr>
<tr>
<td></td>
<td>LS 3D stereo – visual cues</td>
</tr>
<tr>
<td>Response time (s)</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Error rate (%)</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
</tr>
<tr>
<td>Horizontal search tasks</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Vertical search tasks</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Perfect answers (avg)</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
CONCLUSION AND FUTURE DIRECTIONS

- Two things improve search accuracy when compared to a traditional visualisation with multiple separate diagrams:
 - Displaying diagrams in a large screen with colour
 - Visual connecting cues (elision and connecting lines)
- 3D visualisation did not affect search accuracy in the diagrams
- Problems in the CAVE environment (text and stereo effect) will be solved in the future, e.g. computers with real 3D screen are emerging
INTEGRATING UML VIEWS WITH VISUAL CUES

JOUNI HUOTARI
SCHOOL OF INFORMATION TECHNOLOGY
JYVÄSKYLÄ UNIVERSITY OF APPLIED SCIENCES, FINLAND
OUTLINE

• Introduction: problems and needs
• Conventional and potential solutions
• Examples and a demo
• A pilot study and results
• Conclusions
• Information system (IS) models are complex
 – Many views (UML: 4+1), phases, and abstraction levels
 – Graphical representation: e.g. set of UML diagrams
• When the size and number of these diagrams increase, understanding relationships between them becomes difficult
• During IS development, it is very important to find inconsistencies, omissions, and other errors as early as possible
• Designers and reviewers need to understand how design information relates in a larger context
• Current CASE tools do not provide efficient techniques to integrate views and visualize the interconnections in graphical IS models (diagrams in separate windows)
POTENTIAL DEFICIENCIES: INCONSISTENCIES, OMISSIONS, AND OTHER ERRORS

Deficiencies might exist between:

a) external representations,
b) external and internal representations,
c) views (internal representations),
d) views and real world, and
e) external representations and real world

Diagram:

- **Real world**
 - **Observation**
 - **Creation**
 - **Designer’s view**
 - **User’s view**
 - External representations (IS model)
 - **Level 0**
 - **Level 1**
EXAMPLE OF 3 VIEWS; USE CASE, PROCESS, AND LOGICAL VIEW

- Which use cases have detailed descriptions?
- Which use case is the sequence diagram made for?

• Where are the classes or actors used?

=> Separate diagrams; no cues about possible connections
POTENTIAL SOLUTION: VISUALIZATION TOOL

• Utilises appropriate visualisation techniques and cues
 – Coupling and coordination is addressed from an integration point of view
 – Coupling techniques in use are connecting lines and brushing
 – Elision: parts of the hierarchical structure are hidden by collapsing them into icons

• Show complexly interlinked information
 – Overview first, zoom and filter, details-on-demand
 – Enables exploration (new knowledge about relationships can be discovered or existing information can be validated)

• Our first research prototype
 – Student register; hard-coded with VRML
 – Laboratory experiment in Holvi (CAVE)

• Our second research prototype
 – Reads UML model file created with a CASE tool (IBM Rational Rose)
 – Imports use case, sequence, and class diagrams
EXAMPLE OF INTEGRATING DIAGRAMS WITH VISUAL CUES (DEMO)
A PILOT STUDY

• Two conditions (randomly assigned): ISVIS research prototype and IBM Rational Rose
• Six subjects interviewed; three of them participated in the pilot (no previous experience from the tools)
• The reviewing situation was videotaped (thinking aloud was encouraged)
• 12 information search tasks (questions)
 – Question 6: Is there a sequence diagram where both the class “Order” and “Order Line” are specified?
 – Question 10: Estimate how complete the model is. How many of the requirements are currently specified?
• The main dependent variable was search accuracy (time was also recorded)
• Evaluation about the usability of the tools (1=bad, 5=excellent)
RESULTS OF THE PILOT STUDY

• Subject 1: one error with ISVIS tool, 45 min.
 – The error was due to the difficulty in positioning the mouse and selecting the objects

• Subject 2: two errors with Rose, 52 min.
 – Errors mainly due to the difficulty of maintaining control of separate windows

• Subject 3: no errors with ISVIS tool, 45 min.

• Usefulness: average score: ISVIS: 3.4; Rose: 2.4
THE ACTUAL EXPERIMENT TOOK PLACE IN 2005

- N=50, With-in subjects
- No major differences between Rose and ISVIS
- Error rate was the same between the tools
- Usability slightly better with Rose (3.1 vs. 2.9), usefulness better with ISVIS (3.2 vs. 2.8)
- More in-depth analysis is needed
CONCLUSION AND FUTURE DIRECTIONS

• Our tool helps
 – Three different reviewer roles: designers, external reviewers, and teachers
 – People with different skill levels: novices, new designers in a SW project team, and experts in reviewing or decision making (e.g. reusing a component)
 – The actual modelling tool is not needed in order to review the graphical IS models
 – Integrate behavior (processes) and static structures

• Potential solution to a typical integration problem, which exists e.g. in representing organizational structures and functions)

• The benefits of using 3D are not clear

• Usability problems should be solved and more functionality added
OTHER RESEARCH (ON INFORMATION VISUALIZATION)

JOUNI HUOTARI
SOME PLACES TO START

• The Human-Computer Interaction Lab (HCIL) at the University of Maryland:
 – http://www.cs.umd.edu/hcil/

• Laboratory for Information Visualization and Evaluation @ Virginia Tech: http://infovis.cs.vt.edu/

• Visualization ToolKit (VTK): http://www.vtk.org/

• IV conferences, e.g. http://www.graphicslink.co.uk/
JOINT RESEARCH / PROJECT COOPERATION?

• What are your interests?
• How could visualization tools and techniques help you to accomplish your goals?
• We are starting cooperation on topic “Research on Usage of Visualization Techniques for Large Databases Exploration”
• Potential project: “Open Solutions in Higher Education”:
 – Building reusable learning packages based on open source software, open standards, open solutions, and open course material
 – Information Visualization course could be one Case